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As we know the properties of relationships restricting the motion of a mechanical $yStem, 

can be expressed in terms of the properties of possible displacements allowed by these 
constraints. The latter properties make it possible to construct equations of motion Of 

mechanical systems, to find the ways of integrating them and obtaining first integrals 

and to draw conclusions on the mechanical properties of systems. The part played in it 

by fundamental theorems of dynamics and their relationship to the elementary properties 

of possible displacements, is well known. 
Investigating less obvious properties of possible displacements related to groups of Lie’s 

infinitesimal transformations, Poincark [l] established equations of motion of mechanical 

systems based dn the group theory. 
In connection with this.the present paper investigates possible displacements appearing as 

cyclic displacements r2] for the theorems of interaction between the partsof a mechanical 
system,which are mathematically expressed by the first integral obtained in [3]. The latter 

characterises the mutual interaction of parts of a mechanical system [3] and represents an inte- 

gral of cyclic displacements. 

1, Let us consider a mechanical system A, consisting of any number of material 

pointsmlJn2,... and divided into two parts,(l) and (2). We shall use the figure given 
in [3], retaining its descriptive and definitive notation. 

Let the origins of two rectangular coordinate systems X@ and X’@ which are always 

parallel to the fixed system 4 &a , be associated with two points A and A * belonging to 
systems (1) and (2) respectively. 

Let the coordinates ofA and A’ be, in terms of the fixed coordinate systema, fi, ybnd 

a’, B’, Y’- respectively. 
Let us also denote the coordinates of centers of gravity G and G’ of (1) and (2). in the 

fixed coordinate system, by aO, PO, y” and ao’, PO’, ~0’ respectively 

These coordinates are connected by 

a0 = ha f ao, B” = hB + Bo, y” = hy + yo (1.1) 
aor = h’a’ + CCO’, B”’ = h’B’ $ PO’, yO’ = h’y’ + yO’ 

where cq,, &,, yo, ao’, PO and y,,’ are arbitrary constants. 

Smooth.constraints imposed on the sytem allow possible helical displacements of (1) 
and (2) in the manner of rigid bodies. Moreover, rotations O, and 0: are possible, 
directed along two moving straight lines of constant direction passing through A and 4. 

We shall denote by IT a plane passing through a.point Csituated at the intersecdon of 
two straight lines of constant direction AB and A’B’, and parallel to vectors aI end & 
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Points ,!? and B’ have fixed locations in coordinate sytems ,X~Z and X y’z’, and their 
respective coordinates are a, b.c. and a’, b’.c’. 

Let e and e’ 1 be two unit vectors in the T-plane passing through c, parallel to o1 and 

q’respectively and let their direction cosines be lo, mar no and k‘, IIQ’, no’- Let now j..~ 
be the ratio A C: AB, p’ the ratio A *Cz A 8’ and let A and A’ be the vectors coincident 

with segments AB and A 0. 
Possible translational displacements of the systems (1) and (2) are directed along the 

straight lines n and n’, perpendicular to the planes passing through A’, %’ and A, wl* 

We shall denote these planes by V’ and v. 
If we assume that lines AB and A 23’ are of constant direction, then the existence of 

point Cof their intersection under possible displacements of the system, imposes one re- 
striction on magnitudes &? and 6& ‘. To obtain this restriction we shall produce, through 
6”a plane, perpendicular to the line of intersection of planes v and v’. Now, if we co?- 
struct at the point Cstraight lines parallel to n and n’. they will lie in the produced 
plane,and the point of intersection of v and v’ lying on this plane and coincident with 

Cat the instant t. will be somewhat displaced during the translational motion of M and 
61’. Let us denote by T?Z the distance of this point from the initial point displaced along 
n by 64 , and by m’ its distance from the initial point displaced along n’ by 6R ‘, and 

the angle between the planes v and v’, by cp*. Then, we have 

from which 

m = 61-k 61’ cos cp+ 
sincp* ’ 

m’ = 61’ + 61 cos cp* 
sin (o* (I.31 

follows. 

Finally, we shall denote by h and h’ the corresponding angles between the line of in- 
tersection of v and v’and lines m and (% ‘. 

When mechanical systems (1) and (2) are displaced by & and 6& respectively, then 
point Cexists only if 

m Co9 h = m’ CO5 31’ 

holds. This, by (1.3), implies that 

61 (co3 ?V - cos h’ coscp*) = 61’ (cos h’ - cos h coscp*) (1.4) 

Let us choose possible helical displacements such, that (1.4) and 

61 = x’p’e’ x A’, bl’ = we x A, w’ = Ko, (1.5) 

hold. X9’ = X’Ur, w = x01 (K, x, %’ = const) 

Sysrems (1) and (2) are under the action of arbitrary internal forces. Action exerted 
by (1) and (2), can be reduced to: reaction 8 and a couple with the moment R at the 

point A , reaction R and a couple with the moment E’, at the point A’ and reaction R 

plus a couple with the moment IV. at the point C - These forces are such, that condjtions 

W.e = 0, Woe’= 0 (1.6) 

hold oI (x - p) eAR = oh’ (d - p’) e’A’R 

External forces acting on the systems (1) and (2) under the assumption of invariability 

of the systems, can be reduced to forces F and F’ and couples with moments M” and Y”’ 
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at the points A and A’. 

These forces are such, that the conditions 

are fulfilled. 
FoiA’ = 0, F’olA = 0, wl. M” + 01’. M”’ = c) (1.7) 

Using first two conditions of (1.5) and first two Eqs. of (1.Q we can write 

6azx + QIZY f GyZZ = 0, GCL’Z’X + 8fi’Z’Y + Gy’Z’Z = 0 

Here and in the following c denotes summation over the points of(l), whiIe c ‘- over 

the points of (2). 

Let us now take rectangular coordinate systems ETJ~ and E’l’< with origins at A and 
A ’ respectively. They are rigidly connected with solid bodies formed from the points of 
the systems (1) and (2) under the assumption of their invariability within those systems. 

Positions of E@ and S’q’c’systems with respect to X&IZ and X’&& systems are defined 

by respective Eulerian angles 6, $, cp and 6’, $‘, cp’ 
We shall denote by u,V.u~, and u’,V’,rd ithe projections on the SC@ and x’E/‘Z’axes of 

respective velocities relative to $rc and E’q’c’ systems of the points of (1) and (2), 

while by ptc qlr 71 and pl’, ql’, rl’ we shall denote the projections, on (I, y, z; CC’, 

Y’, 2’) -axes of instantaneous angular velocities of mechanical systems (1) and (2) 
taken as rigid bodies associated with EqS and f’q’c’coordinate systems. 

Rates of change of Eulerian angles are related to angular velocities given above, by 

d’# 
dt = J.1 - cot’ 6 (PI sin 9 - ql cos 9) (I.81 

Another set of formulas referring to X’&‘Z’ and E’q’c,coordinates is obtained from 

(1.8) by supplementing all the magnitudes except C , with primes. 

Let us now denote the direction cosines between the X@ and E, q, & axes by a$ 
(i ,k = 1, 2, 3) where the subscripts refer to XJJZ-axes, and the superscripts refer to 

E, q, 5 -axes, Similarly and retaining the same sequential order of indices, we denote 
the direction cosines between the Xv& and E’, q’, 5’ axes, by &c. 

Projections of relative velocities of the points of (1) and(z) on the dr; z/,Z;X ‘, y’,Z*) 
and (%, 7, C and f’, q’, C’)-axes, are connected by 

(uuw, u,*u,*aJ, i = 1, 2, 3) 

(I.91 
(u’ 21’ w’, pli pz’ psi , i = 1. 2, 3) 

where the symbols (247.3~ . . . ) denote cyclic permutations. 
Replacing, in the above formulas, velocities with coordinates, we obtain analogous 

relations between the (5, y, Z, E, v, 6) and (x’, y’, z’, S’, q’, S’) coordinates of the 

points of (1) and (2). 
2. A mechanical system A can, at any time $, be defined in terms of Poincar6 @ and 

21 variables 

a, B, Y, 6, tp, cpt E,, rlv, 5,, a’, B’, Y’, 6’, *‘, cp’, E,‘, Q’. 6,’ (V = 1, 2, . ..) (2.1) 

We shall use real independent variables 
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4, drlv 3.” G,’ h.,’ d5,’ 
dt ’ dt ’ -dt- ’ dt ’ dt ’ dt (Ili.2) 

(a = 1, 2, . . . . 12; i = 1, 2, . . . . 6; Y = 1, 2. ,.,) 

(2 2: 

as parameters qa and niy of real displacement of the system. 

If the system ‘12 consists of free points, then the magnitudes 

Constraints imposed on the system result in formation of some relationships between 
the above magnitudes. In that case, only independent magnitudes can be used as para- 
meters of real displacement of the system. The above relationships do not, however, 
influence the reasoning which follows. Changes that may be necessary, will be perfect- 

ly obvious (e. g, in the formulas for group theory operators, which follow). 

Change of the function of position f (t, a, l3, y, 6, I#, cp, f,, q,, c,, a’, 8’, y’,6’, $‘, 
cp’, E,‘, q;, 5,‘) of a mechanical system over a real displacement of the system, is given 

by 
df= 

-i 
!!&Z~ X f +?lqe x. f 
at a a 1Y 1.9 

1 
dt (a=i,. .1) 12; i I 1, . , 6; Y =-: 1, 2, ,y 

Operators of the infinitesimal Lie group of real displacements, are 

An infinitesimal Lie group of real displacements contains a subgroup of possible dis- 
placements X,, Xi, (a = 1, 2, ._., 12; i = 1, 2, . . . . 6; v = 1, 2 ,... ), which consists 
of two commutative subgroups of uanslational displacements X1, X2, X8 and X1, XF,, 
X,, referred to systems (1) and (2) and possessing the following properties: (Xi, Xi) = 0, 

(X,, X,) = 0 (it: j = 1, 2, 3; s, 7 = 4, 5, 6) of two rotational subgroups X7, X,, X, 
and XlO, Xll, Xt2, referred to systems (1) and (2) and possessing the properties 

(X,, 9,) = - X9, (X&l, X9) = - x,, (X,, X,1 = - X, 

(X10, X1,) = - Xl?? (X,,, X1*) = - X10, (X1,, X10) = - Xl, 

and of two commutative subgroups of relative displacements with the following properties 

(Xiv7 xj,) = ‘7 (‘$,9 
X,,) = 0 (i, j = 1, 2, 3; s, r = 4, 5, 6; v = 1, 2 ,..,) 
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Operators from various subgroups are mutually interchangeable. 

Structural constants of the group of possible disp~a~ern~n~ are C&I..* c8R7 = Cm = 
T== f-h11,1 = %r14r~~ = %,1~,11 = - 1 (cil;s = - Ck?txs; i, k = 7, 3, 9 or 10, 11, i2), 
the remaining ones are equal to 

Velocities of the points of (1) 

zero. 

are given, in the fixed &j y, ,?$-systems, by 

IL -t q1: - rly, (XI!iI$, a&. x:jz, WlP* pr71rt) (2.4) 

in the same coordinate. system are obtained from (2.4) Velocities of the pbints of (‘2) 

by supplementing all the magnitudes except 6, with a prime. 

Kinetic energy of the system /\ is, in accordance with (1.9) and (2.4), given by 

where 
v~.+)2+(?!$~+(~)~, “;,=(?$)“+(~)‘++(!&) 

magnitudes & and J? are obtained from P by cyclic permutations (c&, 2ys, UW), 

!I’,,‘, VpfZ, P’, Q’, H’ and @‘I from the co~es~di~g unprimed functions by adding a 
prime to all (except i; and TB) of them and taking c ’ instead of c, while the functions 

A, B, C, a, E, F, A’, a’, C’, D’, E’, F’, x, y, z, x’, y’, z’, u, v, lo, u’, u’, w’ (Z.(i) 

are given by well known kinematic formulas [4] in defining coordinates 6, I#* 9 and 

W, 9’. cp’ together with the parameters 

of real displacement of the system in terms of tzrk,fitk and M: Also,Mis the mass of 

system (1) while M’ is the mass of system (2). 

3. Although equations of motion of the systems could be written down, they are not 
required for our purpose, 

Direct computation of auxilliary magnitudes Oclk.and @fk,lexpressed in terms of Euler’s 
angles [4J shows, that the operators X, (v = 7, ..,, 12), applied to these magnitudes 
transfarm the tables of cosines a$.and flik of angles between the axes, into 

(3. i) 
0 0 0 i&j’ as* C@ 

XT (ii flip II) - - es1 - es% --a~* - --_ ~8~~1~~11} H 0 .o 0 _~____ 
a2 az2 az= 

--.-___-- .-. I .” 
- aI* - aI’ - ala 

- a21 - a22 - a$ 

XS ( 11 aI4 II) - aLL aL2 aL* 

u 0 0 
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P3’ P2 l%s3 - 92 - &” - $3;” 

x11 (II w III - 0 ” 
-p _; 

x12 (liB$ Ii) - @l’ B12 813 

- Pl" 12 13 0 0 0 

from which we can find the variation of functions (2.6) over the possible displacements 

X,(y = 7,..., 12). E.g. we have 

X7 (z) = 0, x, I$!) = - z, XT (2) = y, x, (u) = 0, X, (u) = -20, XT (?I?) = Q, .*- 

from which we easily find 

X,(A)= 0, x, (B) = 20, X,(C)= -220, X,(D)==C--_,X,(E)=F ,... 

In G+‘z and wz’ coordinate systems we have 

Xmt = M [(A - f)a +a01 (ZYG 4rl 4&f (34 

Z’rnx’ = M’ [(h’ - l)a’ + ao’l (z’y’z’, a’B’y’, a0%‘y0’) 

Expression (2.5) for kinetic energy yields, by (2.4) and (3.2), 

~ = 7a.f dt (@-%I (3.3) 

!!T_ -_ 
%Jl 

(PlWl, @Prl TP, &S2&) 

For the points of system (1) we have 

6x, = 6a + OlZ - ply + 6x,, n1= p1E (Z,Y,Z,, cx;flY, OlPl%, WG PlQlrl~ (3.4) 

where 8x,., 6y, and dz, are the relative displacements of points of (I) referred to the 

Zgz axes in terms of projectfons on these axes. 

Formulas for the system (2) m obtained from (3.4) by indexing the appropriate magtii- 

tudes with a prime 
work done by external forces acting on the system A, the forces exerted by (2) on (1) 

and the forces exerted by (1) on (2) are given, over any possible displacement, by 
(3.5) 

6U= 6cr(ZX - KJ + W(XY - fl*> + ay (XZ - Jirr) + RI (H, - W,J 4- 

f%@~-- WV1 3-P1Wz- WJ +-~'(~'~4--%~ "+W~~'Y$_~,~ 4- 

+-6y: (2'2 + R,) + n,'(H,'+ WY"') 4-G< W,' + ‘w;d'I 4 PI'@, 4- W,') 4- 

+ xX&2, + zwy, + zzsz,+ Z'XGx,'+ X’YGy,‘-+ Z’Z6z,‘+Wr 

where sup is the work done by the forces listed above (without, however, the exn%rnal 
forces), over the relative displacements 6~,, .., , 6~~'. 

Variation of Uover a possible displacement is given by SU = %,X,(U). 
Here 0, are the parameters of .possibie displacem&ts, Comparing it with (3 51, we 

obtain 

x,(U)= ZX-RR,, xg\U)== ZY-RR,, X,(u)= =--R, 

x,(U)= Z’X+R,, X,(U)= ~‘Y;$-R,, x,(u)= x’z+Rz (3.6) 
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X, (U) = H, - Wm X,(U) = H,, - w,, xs (U) = H, - w, 
x,0 ( U) = H,’ + Wx’, Xl1 (U) = H,’ + It’!,‘, Xl2 (U) == Ii,’ + tTZ 

If helical displacements shown above are taken as possible displacements, then the work 
done by internal forces is equal to zero. 

4. Chetaev p] developed a method of determination of cyclic first integrals by generalis- 

ing the concept of cyclic coordinates and introduced the concept of cyclic displacements. 
The latter concept can be enlarged by replacing the condition of conservation of the 

Lagrangian over any displacement, with the condition of conservation of the potential 
energy over a linear combination of possible displacements possessing constant coeffici- 

ents, At the same time the condition that cyclic displacements form an Abelian sub- 

group of the group of possible displacements, is replaced with some structural properties 
of the function expressing the kinetic energy of the system. 

Poincarg equations [1 and 21 for mechanical systems with k degrees of freedom under 

smooth holonomic constraints and acted upon by forces admitting the force function, 

have the form 
d (3L -- 
dt 8% 

= 2 c&la g + XiL (i = 1, . ., k) 
a, fl 

(4.1) 

where I, = IF -t_ U is the Lagrangian function, qi are real independent variables de- 

fining real displacements of the system, 17,~~ are the snuctural constants of an intrans- 

itive group of k elements of infinitesimal operators 1, of possible displacements linear 
with respect to ?a real independent variables zIr . . . . zn, which define the position of our 

mechanical system. 

Displacements X,(u = s + 1, . ,., k) are according to Chetaev cyclic, if they satisfy 
the conditions 

x,x. = 0, (X,, Xp) = X,XB - xpx, = 0 (B=i,...,k) (4.2) 

Equations (4.1) yield, for cyclic displacements, according to (4.2). the following first 
integrals 

aL = const 
alla 

(a=s+i,...,k) (4.3) 

Let the kinetic energy of the mechanical system be of the form 

where the coefficienls g,a, a, and T,, are the functions of variables 2, zl, . . . , Zn. 
Potential energy uis a function of variables 21, . . . . 2,. 

Displacements X, can be considered as compound cyclic displacements, provided 

that conditions 

~k,x,(W =o (r <k) 
v=r 

for some values of h, (4.4) 

x, k,& = 5 (Cv,ygg, + C”BY gplr4 x, (a,) = i Cvay Q* 
Y=l -f=l 

are fulfilled. 
x, PO) = 0 (A, = const) 

Set of the compound cyclic displacements makes it possible to obtain a first integral 
from equations of motion (4.1). 
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Multiplying the v-th equation of (4.1) by a constant multiplier h, and collecting 

17- equations in accordance with (4.4), we obtain 

; Z,“” St;- == 0 

” 

First integral for the set of compound cyclic displacements is then 

Displacements Xi (i - 1, . . . . k) can yield several sets of compound cyclic displace- 
ments _r, and a first integral exists for each set. 

If the dispIacement tX, is cyclic in the Chetaev sense, then from the second condition 
of (4.2). we have 

c.,,9i = O (fi,i = 1, ..*a, k) 
Let us put 

I, = 0 (S = 1,. _. , 1’ - I, v + 3, . . . , r), A,,+ 0 

Then (4.4) will yield 

XV (T) = 0, x, (U) = 0 

from which the first condition of (4.2) foIlows. 
In this case, the enlarged concept of cyclic displacement coincides with Chetaev’s 

concept of cyclic displacements. 

5. Let us assume that for the problem under consideration, the values of h, are 

h, = KX (IX’C’ - n’b’) (h&J,, i’m’n.‘, a’b’c’) 

A, = x (mc -- nb) (h&I+ hn, abc) 

A7 = 1, li, == rn, ha = n, h,c, = Kl’, A,, = Km’, AI2 = A’n’ 

By (1,5), (1.6) and (3,6) and assuming that 

W=H--pAxR=H’-p’A’XR 

we have 

5 h,X, (U) = 0 
“=I 

Third and fourth condition of (4.4) hold, since u, = 0 and TO = 0. 

Second condition of (4.4) can be directly verified using Expression (2.5) for potential 

energy and the values of structural constants. 

First integral of (4.5) has the form 

b’ 2 - c’ $) + m’ (d $ - a’ 2) + n’ (a’ 2 - b’ z)} $ 

dP ax - b d?’ 
dt 

+ tS1 + rnS2 + 

+ ~$8 + K (PSI’ + m’S,’ + dSa’) = const 

Possible displacements corresponding to various operators of the groups, are considered 
for other problems in [5 to 71 and cyclic displacements are also given there. 
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